

The Timeline (ver 2023.03.22)

subject to change

- Intended schedule by IPNS.
- Decadal plans for SuperKEKB and J-PARC are approved by MEXT.
- HL-LHC is to be reviewed soon.

- 1. Hyper-K /J-PARC upgrades
- 2. HL-LHC
- 3. muon g-2/EDM
- 4. HEF extension

- PIP2022
- 1. HEF extension
- 2. HL-LHC++
- 3. LiteBIRD
- 4. Muon Microscope

Beam Power History at MLF

30GeV Main Ring status

MR Beam Power

FX operation (Mar. and Apr. 2021)

Beam power (max.): 510 kW

- SX 30 GeV Extraction Beam Power: 64.5 kW
 - Extraction Efficiency: 99.5 %
 - Spill Duty: 50 55%
- SX 8 GeV Extraction (May 20 25)
 - Beam Power: 1.8 kW
 - Extraction Efficiency: 99.1% (It was 97.3 % in 2018)
 - Spill Duty: 55% (It was 16% in 2018) As of June 29, 2021

More Rapid Cycle:

 $2.48 s \rightarrow 1.32 s \rightarrow 1.16 s$

- · Main Power Supply to be renewed
- High gradient RF Cavity
- Improve Collimator
- Rapid cycle pulse magnet for injection/extraction

More Protons /

Pulse:

- · Improve RF Power
- · More RF Systems
- · Stabilize the beam with feedback

Achieved stable operation at

FX:515kW

SX: 64kW

Before major upgrade

- Major upgrade for power up
 - Rep rate 2.48s \rightarrow 1.32s (\rightarrow 1.16s)
 - Ppp 260Tp → 330Tp
 - L.S. from Summer 2021~ March 2022 for installation
- ~2022/3 New PS installation
- 2022/4~ PS test operation/tunning
- 6/27-7/7: Beam circulated @ 3GeV
- After some unexpected initial failure, beam operation restarted Jan 23, 2023!

High Intensity Beam Tuning

- High-intensity beam study was performed with two bunch beams $(2.7\times10^{13} \text{ ppb})$ at the flat-bottom.
- Although the beam loss during the injection period was a little worse, loss localization was very good.
- → Protons of 740 kW equivalent were accumulated with well-controlled beam loss.

ough Accelerat

Electricity in FY2022 and further

- Unit price kept rising up during whole FY2022 exceeding our assumption of rise
 - JAEA announced in July to run until Feb. 10
 - KEK anticipated operation until around early March
- Nov. 2023: Supplementary budget for electricity for both JAEA and KEK
 - LI/RCS/MLF operation extended until Mar. 14
 - KEK also ran until Mar.14

Hadron Experimental Facility

Explore the origin of matter with nuclear, hadron, and flavor physics

KOTO

Search for direct CPV in KL

K Rare Decay (CP violation)

Branching ratio (BR)

Search down

to $< 10^{-10}$,

approaching

SM

prediction

 $<3\times10^{-9}$

bound (<6.4×10⁻¹⁰)

РНОТО

SM (3×10⁻¹¹)

PHYSICAL REVIEW LETTERS 126, 121801 (2021)

2016-18 data

Study of the $K_L \to \pi^0 \nu \bar{\nu}$ Decay at the J-PARC KOTO Experiment

Nobserved (=3) is statistically consistent with N_{BG} (=1.22±0.26). TABLE II. Summary of the numbers of background events with a central value estimate.

Calorimeter

Source		Number of events
K_L	$K_L \rightarrow 3\pi^0$	0.01 ± 0.01
	$K_L \rightarrow 2\gamma$ (beam halo)	0.26 ± 0.07^{a}
	Other K_I decays	0.005 ± 0.005
K^{\pm}		0.87 ± 0.25^{a}
Neutron	Hadron cluster	0.017 ± 0.002
	CV η	0.03 ± 0.01
	Upstream π^0	0.03 ± 0.03
Total	-	1.22 ± 0.26

SES=7.2×10-10 BR<4.9×10-9

COMET Phase-α excitements

Muon g-2/EDM Experiment

Precision measurements of lepton moments with novel technique

Spin precession of muon

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

Spin precession vector w.r.t momentum:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

g-2 precession in B-field

g-2 precession in motional B-field

EDM precession

BNL/FNAL approach γ =30 (P=3 GeV/c)

J-PARC approach E = 0 at any y

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right] \qquad \vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} (\vec{\beta} \times \vec{B}) \right]$$

BNL & FNAL E989

J-PARC E₃₄

Simultaneous measurements: g-2, EDM

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} (\vec{\beta} \times \vec{B}) \right]$$

Expected time spectrum of e^+ in $\mu \rightarrow e^+ \nu \nu$ decay

Revised schedule and milestone

PAC35 (Jan. 2023)

Summary

- J-PARC covers important sector of Flavor Physics!
 - T2K-II waits for new MR beam / Hyper-K project proceeding as scheduled so far.
 - New results coming out for nuclear-hadron physics at HEF
 - COMET finally started to receive the beam!
 - KOTO is making solid progress.
 - MLF experiments
 - sterile neutrino search JSNS² continues; the 2nd detector
 - Muon g-2/EDM is under construction waiting for a "real green light" from MEXT

Let's Share More Excitements!

